Cluster-Seeking James-Stein Estimators
نویسندگان
چکیده
This paper considers the problem of estimating a high-dimensional vector of parameters θ ∈ R from a noisy observation. The noise vector is i.i.d. Gaussian with known variance. For a squared-error loss function, the James-Stein (JS) estimator is known to dominate the simple maximum-likelihood (ML) estimator when the dimension n exceeds two. The JS-estimator shrinks the observed vector towards the origin, and the risk reduction over the ML-estimator is greatest for θ that lie close to the origin. JS-estimators can be generalized to shrink the data towards any target subspace. Such estimators also dominate the ML-estimator, but the risk reduction is significant only when θ lies close to the subspace. This leads to the question: in the absence of prior information about θ, how do we design estimators that give significant risk reduction over the ML-estimator for a wide range of θ? In this paper, we propose shrinkage estimators that attempt to infer the structure of θ from the observed data in order to construct a good attracting subspace. In particular, the components of the observed vector are separated into clusters, and the elements in each cluster shrunk towards a common attractor. The number of clusters and the attractor for each cluster are determined from the observed vector. We provide concentration results for the squarederror loss and convergence results for the risk of the proposed estimators. The results show that the estimators give significant risk reduction over the ML-estimator for a wide range of θ, particularly for large n. Simulation results are provided to support the theoretical claims.
منابع مشابه
Comparison of Small Area Estimation Methods for Estimating Unemployment Rate
Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...
متن کاملStein Type Estimators for Disturbance Variance in Linear Regression Model
This article has no abstract.
متن کاملJames-Stein shrinkage to improve k-means cluster analysis
We study a general algorithm to improve accuracy in cluster analysis that employs the James-Stein shrinkage effect in k-means clustering. We shrink the centroids of clusters toward the overall mean of all data using a James-Stein-type adjustment, and then the James-Stein shrinkage estimators act as the new centroids in the next clustering iteration until convergence. We compare the shrinkage re...
متن کاملJAMES-STEIN TYPE ESTIMATORS IN LARGE SAMPLES WITH APPLICATION TO THE LEAST ABSOLUTE DEVIATION ESTIMATOR BY TAE-HWAN KIM AND HALBERT WHITE DISCUSSION PAPER 99-04 FEBRUARY 1999 James-Stein Type Estimators in Large Samples with Application to The Least Absolute Deviation Estimator
We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point, which makes it possible that the “prior” becomes more accurate as the sample size grows. We provide an analytic expression for the as...
متن کاملJames-Stein Type Estimators in Large Samples with Application to the Least Absolute Deviations Estimator
We explore the extension of James-Stein type estimators in a direction that enables them to preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator towards a fixed point, we shrink it towards a data-dependent point. We provide an analytic expression for the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent poi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 64 شماره
صفحات -
تاریخ انتشار 2018